USAARL Report No. 98-33

Designing Optimal Hierarchies for
Information Retrieval with
Multifunction Displays

By
Gregory Francis

Purdue University

—
~D
~
o0
Aircrew Health and Performance Division v
>
[—
OO
| —
July 1998 —_—
| —
G (YT INCPOCTED

Approved for public release, distribution unlimited

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron
Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other
person designated to request documents from DTIC. v

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic
mailing lists should confirm correct address when corresponding about laboratory reports.

Dispositi
Destroy this document when it is no longer needed. Do not return it to the originator.

Disclai

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy, or decision, unless so designated by other

official documentation. Citation of trade names in this report does not constitute an official Department of
the Army endorsement or approval of the use of such commercial items.

Humanp use

Human subjects participated in these studies after giving their free and informed voluntary consent.
Investigators adhered to AR 70-25 and USAMRMC Reg 70-25 on Use of Volunteers in Research.

Reviewed:

MORRIS R. LATTIMORE, JR.
Colonel, MS
Director, Aircrew Health &

Performance Division
Released for publication:

' A CALDWELL, Ph.D.
Chairman, Scientific Review
Committee

CHERR GAFFNEY
Colonel, MC, SFS
Commanding

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

tb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release,
unlimited

distribution

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
USAARL Report No. 98-33

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(If applicable)

MCMR-UAD

6a. NAME OF PERFORMING ORGANIZATION
U.S. Army Aeromedical
Research Laboratory

7a. NAME OF MONITORING ORGANIZATION
U.S. Army Medical Research and Materiel
Command

6c. ADDRESS (City, State, and ZIP Code)
P.O. Box 620577
Fort Rucker, AL 36362-0577

7b. ADDRESS (City, State, and ZIP Code)
Fort Detrick
Frederick, MD 21702-5012

8b. OFFICE SYMBOL
(If applicable)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

10, SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENTNO. | NO. NO. ACCESSION NO.
62787A 301627874879 PB DA336445

11. TITLE (Include Secunty Classification)

Designing Optimal Hierarchies for Information Retrieval With Multifunction Displays

1))

12. PERSONAL AUTHOR(S)
Gregory Francis

13b. TIME COVERED
FROM TO

13a. TYPE OF REPORT
Final

14. DATE OF REPORT (Year, Month, Day)

15. PAGE COUNT
1998 July 64

16. SUPPLEMENTAL NOTATION

17. COSATI CODES
FIELD GROUP

SUB-GROUP

workload

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Cockpit design,

hierarchy, multifunction displays,

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Modern aircraft use computer screens with a push button interface to replace a variety of

single-purpose instruments.

Such multifunction displays (MFDs)

are gradually being

introduced into military helicopters, with future aircraft likely to be highly dependent

on computers.
impact on user satisfaction and performance.

Studies have shown that poor design of MFD hierarchies has a significant

The purpose of this study was to extend a

theoretical analysis of hierarchy search into a methodology for gathering data and
building a hierarchy layout that minimized the time needed to find items in a hierarchy.
Pilot studies demonstrate the effectiveness of the methodology and show that optimizing
hierarchy layout may lead to a 25% reduction in search times.

20._DISTRIBUTION / AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED SAMEASRPT. | | pmicusers | Unclassified
P — M
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Chief, Science Support Center (334) 255-6907 MCMR-UAX-SS

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Table of contents

Page

INErOGUCLION.ooiuiiiiieieiie ettt ettt ae e e n st e b e ea e s b e sraeensans 1
General apProachccccooiiiiiiiie s 3
A hierarchical interface ... e 3
Measuring MOLOT tHMEccoeunuuiit ittt et et et e eea e e ceeieeaeae 5
Measuring categorization timeccviiitiiiiiiiiiiiin et e eeaan 5
Optimizing hierarchical layout 7

TEStINg. .. oottt e sae s |

EXAMPIE 1....ooiinieieiiee ettt ettt s s 7
EXAMPIE 2.ttt e s 12
CONCIUSIONS.........oeeenreeiieeiteectiieeeeere e st ee e e e tesebee s bt e e enatesebesaseaesanesasaessneanbesennaesssaennsennse 12
REFEIEIICES ...ttt eeete st et e ebesas e s e s st et e e e se st eseaeseessneesaeseeneeemeeenseneennaennen 15
Appendix A. Hierarchy search computer software...................cccocoiiiiiiniinnnn. 17
Appendix B. Summary of Java classes ... 18
Appendix C. Java source Code............cccooiiiiniiiiiiiiiiiieec s 28
List of figures
Page

1. Schematized drawing of two pages from an MFD display and its push-button
101 g ¢: 1o TSSO U UOR ORI 2
2. Three displays from the program designed to investigate user interactions in
hierarchical S€arch...............ccooiiiiiriiiic e e 4
3. The program for measuring motor time.................coooiiiiiiiiiiiiiii i, 6
4. Mean searCh timesouiriinitiiiiiiiiie e et ees eerreeee st eeeeete e saeeaeene O

5. Hierarchy displays along the path to Monterrey, Mexico, for the optimized hierarchy.

... 11
6. Mean search times for users in the second pilot study.cccoceiiincnnininnnn. 13
A-1. The Java classes written to explore hierarchy searches.ccocovivvnncccnencns 17

Introduction

Military and civilian aircraft in the 1960's and 1970's used many separate gauges, dials, lights,
switches, buttons, circuit breakers, control wheels, and levels in tightly packed aircraft cockpits.
The introduction of new instruments and data sources forced a competition for limited cockpit
space. This competition was partly alleviated by the introduction of microcomputers and video
displays into the cockpit environment. Multifunction displays (MFDs), capable of presenting a
variety of information from different sources, replaced many electromechanical devices, thereby
freeing room in the aircraft cockpit. Current MFDs are often similar in appearance and usage to
automated teller machines in that crew members push buttons to move through a hierarchy of
display pages containing instructions, information, or lists of user-activated functions. They
increase the total amount of available information, with the limitation that only some of it is
visible at any given time. An additional benefit of MFDs is to provide a simpler layout of
cockpit instrumentation, so that crew members spend less time scanning for information and
more time piloting the aircraft. The reduction in pilot workload due to the introduction of MFDs
in the cockpit was a primary factor in eliminating the need for flight engineers in many current
generation transport aircraft.

Figure 1 schematizes MFDs as they are used in a variety of modern aircraft. Information is
supplied on a large computer monitor. Push-buttons surround the monitor to allow the crew to
interface with the MFD computer. Figure 1A shows real-time status information from the
aircraft engines and other aircraft systems (SYS). Figure 1B shows targeting information. The
push-buttons along the sides of the MFD are associated with software-generated display labels,
indicating jumps to additional display pages containing related information. Pressing a soft-key
causes the MFD to display a new page containing the information or functions indicated by the
key’s label.

MFDs typically contain a wide range of single and multistep functions. The type of objects
and information displayed on the MFD, the data acquisition channels that are represented by the
displayed objects, the set of active database links, as well as the functions that soft-keys can
activate are commonly grouped together logically on one or more interconnected display pages.
Pilots dynamically select a display based on the information and functionality desired to
accomplish changing flight management or combat tasks such as situational awareness,
navigation, communications, systems monitoring, battlefield and threat monitoring, and
targeting.

Despite the significant impact of MFDs on the layout of instrumentation in aircraft cockpits
and the responsibilities of crew members, little is known about how users search for information
in such systems. Several studies have investigated the physical characteristics of the displays
and the push-button interface (e.g., Rash and Becher, 1982; Hannen and Cloud, 1995; Klymenko
et al., 1997). These studies help insure that crew members can see the monitor and reach the
buttons for a variety of conditions (e.g., direct sunlight using protective gloves). Other studies
explore the opportunity to create new types of information displays (e.g., Braithwaite et al.,
1997). In contrast, there has been little research to insure that crew persons can quickly search
through the hierarchy of information in the MFD database to retrieve needed information.

>
™

-am-ew

-ww
L 2 X
—~-me

) ()] ()] (] ()] (=)
a) (=) (][] ()] -]
][] () (@) (] [

9 BEERIFERER & @ CPFRIEER

Figure 1. Schematized drawings of two pages from an MFD display and its push-button interface.
In A, the systems page shows information on engines and includes legends along the
right to indicate that pressing the associated button will cause the display to present the
requested information. In B, the same display screen shows a page with targeting
information.

The military guidelines (MIL-STD-1472D) for development of the hierarchical structure of
information in the MFD provide few instructions and little justification. The small number of
studies investigating hierarchy design issues may reflect the difficulty of the problem. As described
in Francis and Reardon (1997), small changes in part of a hierarchy can have profound effects on
search times elsewhere in the hierarchy. Such sensitivity makes general guidelines difficult to
apply. As a result, hierarchy creation currently remains an artistic endeavor, depending primarily on
the experience and intuition of the designer.

The few studies exploring the impact of hierarchy design suggest that it is important. In non-
military domains, hierarchy design has been identified as a key factor in overall performance and
satisfaction with an MFD type device (Seppala and Salvendy, 1985; Cook and Woods, 1996).
Studies using simulated military aircraft suggest that MFD hierarchy design may affect crew
workload and situation awareness (e.g., Reising and Curry, 1987; Sirevaag et al., 1993).

To promote a more rigorous analysis of hierarchy design, Francis and Reardon (1997)

developed a mathematical framework that considers a variety of factors in hierarchy design. The
current document shows how to apply that framework to particular cases of hierarchy design.

General approach

MFDs trade a search of physical space for a search of virtual space through the hierarchy of
information. Other things equal, it is desirable to arrange the hierarchy of information in a way
that minimizes the search time. Francis and Reardon (1997) provided a theoretical framework to
consider this issue. They identified an optimization method that chooses the best layout of
information in the hierarchy. For the optimization method to succeed, it required a model of the
time needed to search through the virtual space of the MFD hierarchy. In this section, we briefly
summarize the model proposed by Francis and Reardon and show how to apply it to a particular
design task.

Each page in an MFD hierarchy defines a unique path of button pushes that terminates when
the page is shown. Measuring the time to reach a hierarchy page requires knowing the time
needed to move to and push the various buttons along the path to the page. These movement and
push times all contribute to a motor term. These times are possibly distinct from the time
required to decide which button to push. Such decisions require reading various choices until the
option leading to the target page is identified. The times to read, interpret, and decide to select
contribute to a categorization term. Together with any computer response time, this analysis
suggests that the time to reach a page in the hierarchy will be:

T = (motor) + (categorization) + (computer response).

Each of these terms is likely to vary with the pattern of button pushes that define the path, the
options to be categorized along the path, and the information displayed by the computer. By
considering the variations in these variables for different buttons and items, the optimization
method selects a layout that maximizes performance according to any designer-imposed
constraint. This approach uses information in the details, or mlcrostructure of the human-
computer interface to maximize performance.

The analysis in Francis and Reardon (1997) was theoretical; it described equations and
techniques for identifying an optimal layout of information when specific data were available.
We now explore methods for gathering the needed data and demonstrate the utility of the
method. For that purpose, we developed a suite of computer programs to investigate hierarchical
searches. The programs will be described briefly in the ensuing text and more fully in the
appendices. The next section describes the basic interface used to explore hierarchical search.
Data were gathered from this interface using methods described in subsequent sections. The data
were then used to build an optimal layout of pages that considers the microstructure properties of
the human-computer interaction. The validity of the optimization method was then verified with
further experimentation.

A hierarchical interface

To investigate the microstructure of hierarchical information retrieval, we wrote a program in
the Java programming language that allowed users to select virtual buttons with mouse controls.
Selecting a button moved the user through a virtual hierarchy of information and generated a
new set of options associated with each button. Figure 2 shows snapshots of the interaction
window at various positions along a path to a target item. In this case, the display portrays

Tak_RPM, Rotor

Tall_RPM, Rotor

Tail_RPM, Rotor

Figure 2. Three displays from the program designed to investigate user interactions in
hierarchical search. The user is given a target item in the center of the window and
moves through the hierarchy to find the item. The user moves through the hierarchy
with successive mouse clicks on the appropriate buttons to reach the target. A shows
the top level, where buttons code major systems in a helicopter. B shows a screen
from the second level, where buttons code various aircraft systems. C shows a screen
from the bottom level, where buttons code various types of rotor information,
including Tail_RPM, the target item.

aircraft information suitable for use in a military helicopter. After pressing the Next target
button, a target item (sometimes paired with its parent to help the user find it) was displayed in
the center frame. The user was to move through the hierarchy toward the target item as quickly
as possible.

Figure 2a shows the top level of the hierarchy, where the options are various aircraft
information and the target is Tail-RPM, Rotor. Selecting the Aircraft-SYS button changes the
labels on the buttons to those shown in Figure 2b, where the options are various choices in
aircraft systems. Selecting the Rotor button changes the labels to those in Figure 2¢, which show
options for the rotor system. Selecting the Tail-RPM button means that the user has found the
desired item. This basic scheme was used in a number of different ways to explore hierarchical
search.

Measuring motor time

Defining the motor term of the model requires identifying the time needed to make button
presses and to move the mouse control between buttons. This cannot be done during a normal
hierarchical search because the time to find an item includes both the time to physically push the
correct buttons and the time to categorize items. We hypothesized that the motor time could be
isolated in a situation where the user knew in advance where to move the mouse control. In such
a situation there would be no categorization time.

Thus, we created a program that required the user to select pairs of buttons. Figure 3 shows a
snapshot of the program window. Each button is numbered between 0 and 7. The center region
specified the pair of buttons that were to be pressed in succession. The program measured the
time between the first and second button presses. This measure was repeated for every
combination of successive button presses, including repeated selection of the same button. (The
only exception was that the user was never asked to make a movement that ended in the Nex?
target button, as such movements never occurred during searches of the hierarchy.) The time for
each movement was measured several times, and the average stored in a file for later use.
Because the user could plan the movement before the first button press, we hypothesized that the
movement time was a pure measure of how long it took to physically move and initiate the
mouse control.

Measuring categorization time

The optimization technique described in Francis and Reardon (1997) required, in addition to
the motor times, the time needed to categorize items. Unlike the technique for measuring motor
times, there seems to be no direct method of measuring categorization times. Any measure of
response time necessarily will include both categorization and motor times. We need to
disentangle these terms so that the model can predict response times when the hierarchical layout
is restructured and the items are paired with new motor times.

To disentangle response times, we modified the basic hierarchy search program so that it
measured the time between successive button presses as the user went through a path toward a
target item. The time between button presses was coded by item name and stored in a file for
later use. We refer to these measures as between item search times.

. r\. Motor data

215

Figure 3. The program window for measuring motor time. The center panel displays a
sequence of button presses for the user to perform. The program measures the time
between the first and second button press. Since the user can find the buttons to be
pressed before starting the movement, the time should include only motor time.
Motor time was measured in this way for every pair of buttons.

Next, we used the previously measured motor times between button presses and the between
item search times to derive categorization times. We used the following logic. The between
item search time includes both motor and categorization time. Thus, subtracting the motor time
from the between item search time should leave an estimate of the categorization time. This
calculation was performed for every item in the hierarchy.

This approach has the benefit of avoiding another difficult problem in measuring
categorization times. Previous attempts to model hierarchical search have noted that
performance critically depends on the search strategy utilized by the user (Lee and MacGregor,
1985; Paap and Roske-Hofstrand, 1986; Vandierendonck, Van Hoe and De Soete 1988). In an
extreme case, if the user is very familiar with searching through the hierarchy and knows the
button presses needed to reach each item, categorization time will be negligible. On the other
hand, if the user has no experience searching through the hierarchy, categorization time will be
substantial and highly dependent on the details of the user's strategy. More commonly, a user
will know the button presses needed to reach some items in the hierarchy but will need to search
labels to find the path for other items. Such effects are likely to be highly dependent on the items
in the hierarchy and their significance to a particular user, so there is probably no way to model
the effects of learning.

Our measure of categorization time avoids modeling learning effects by measuring the
resulting behavior that depends on those effects. From the point of view of predicting search
times, it does not matter why some items are categorized more quickly than others, what does

matter is how long it takes to categorize each item. Our measure calculates the needed
information directly without worrying about the underlying details.

With the motor and categorization data, it is possible to predict the time required by the user
to find an item for any layout of information in the hierarchy. To make this prediction for a
single item, the computer simply notes the path needed to reach the target item, the buttons that
must be pushed along that path, and the items that must be categorized along the path. The time
for all button pushes and movements and the time for all categorizations sum to equal the
predicted search time.

Optimizing hierarchical layout

With the ability to predict search times for any layout of information in the hierarchy, it is
possible to search through different layouts for the one that minimizes expected search time.
Unfortunately, there are so many different possible distributions of items in the hierarchical
structure that it is not feasible to consider them all. Instead, we used a computational technique
called simulated annealing, as described in Francis and Reardon (1997). This computational
algorithm sifts through the possible hierarchical layouts to consider only those that have the best
chance of generating small search times. While the algorithm does not guarantee to find the
optimal layout of items in the hierarchy, in practice it usually produces a layout with a search
time close to the optimal.

Testing

A final program takes the hierarchical layout generated by the optimization program and
generates the button interface for user interaction. As the user searches for specified target
items, the computer keeps track of the search times. After the user is finished searching for
items, the program writes to a file the predicted mean search time (as generated by the
optimization program) and the mean actual search time (as measured during the user's
interaction). These are then compared to each other to consider the accuracy of the model's
predictions. They are also compared to the original time required to search for items in a non-
optimal hierarchical layout of items. The next two sections describe pilot studies that used this
general approach to hierarchy design.

Example 1

The first example shows application of the method using data gathered from a single user (the
first author). The hierarchy portrayed geographical information (continent, country, city) instead
of the aircraft information portrayed in Figure 2. This change was incorporated to insure that
subjects not familiar with aircraft systems could participate. The methodology of building an
optimal hierarchical layout remains the same regardless of the information in the hierarchy.
Subjects were asked to move through the hierarchy to click on the button for a city, country, or
continent.

The programs described above were run on a laptop computer. Of note, the mouse control
was utilized through a touchpad device, which is common on a variety of laptop computers. A
touchpad is a small touch-sensitive pad. A light touch on the pad gives the user control of the
cursor placement. Dragging a finger along the surface of the touchpad moves the mouse cursor
in the same direction. A mouse click is initiated by quickly tapping twice on the touchpad in the
desired location. The touchpad device is useful for laptop computers because it offers the
functionality of a mouse with small space requirements. However, precise control of cursor
movement is somewhat difficult with the touchpad, and correction adjustments are frequently
necessary. It is also sometimes difficult to start and stop movement of the mouse cursor,
especially for small movements. As a result, sometimes a larger movement can be accomplished
more quickly than a short movement. None of these characteristics affected the basic approach
to hierarchy design, and motor movement times were gathered as described above. For each
movement, the average of 10 replications was used as the measure of motor time.

If all items in the hierarchy are accessed equally often, and the user is very familiar with the
path for each item, there is no difference between hierarchical layouts. Such situations are
probably very rare. For most MFD applications, some items are searched for more often than
others. The goal of the design process is to place frequently searched items at the end of
hierarchical paths that are quickly accessed. To emulate the inhomogeneity of search frequency,
we created artificial mission scenarios. Each scenario required the user to search for a fixed set
of 20 randomly selected items from the full (268 item) set. In each scenario 10 of the items were
searched for 5 times and the other 10 were searched for once. For each scenario, we gathered
categorization data and built and tested an optimal hierarchy.

To gather categorization data, the hierarchical layout was partially randomized so that every
item was located underneath its appropriate header category, but was in a random (fixed)
position under that header (e.g. each city remained under its appropriate country, but was
randomly assigned to a button). The randomization was used to insure that there were no order
cues (e.g. alphabetical order) that would guide the user's search process. A scenario was run
twice. On the second run of the scenario, between-item time was measured for each item
encountered in the hierarchy. These items included both the target items in the mission scenario
and the items located along the paths to reach the target items. We did not use data from the first
run of the scenario, as it would likely show strong learning effects for those items frequently
searched. The average between-item time for every item in the hierarchy was stored in a file to
be used by the optimization program.

A program that created an optimal hierarchy converted the motor time data and the between-
item data into independent motor time data and categorization time data. For the mission
scenario, the program then considered different hierarchical layouts to identify the one that
minimized predicted search time. This was a time-consuming process, requiring approximately
45 minutes for a scenario. When the optimization procedure ﬁmshed, it wrote to a file the
hierarchical position of each item.

Finally, a testing program read in the hierarchical data generated by the optimization program,
and the user participated in two runs of the sceriario. The testing program gathered data on the
second run of the scenario to measure the mean time to reach an item in the optimal hierarchy.
Figure 4a shows the expected time required to find a single item in the hierarchy for three
different mission scenarios. For each scenario, three values are plotted: the expected search

Mean 3.5
search 3 4
time 2.5 4
(seconds) 2 -

LR

H Random
B8 Optimal (predicted)
= Optimal (actual)

3 Average

4.5 -

4 -
3.5 -
Mean 31
search 25 1
time 24
(seconds) 1': l
0.5 -
0 - . .

Alphabetical Random Optimal Optimal
{predicted) {actual)

Layout style

Figure 4. Mean search times. A shows expected search times for three scenarios and the
average. Three measures are plotted for each scenario. Random indicates that the
layout of information was randomly ordered on its appropriate page. Optimal
(predicted) is the model’s prediction of expected search time, using the layout of
information that minimizes predicted search time. Optimal (actual) is the search
time for the optimal layout as measured through user interaction. B shows averages
across three trials for alphabetical, random, and optimal layouts.

time for the random hierarchy (used to gather between-item data), the model-predicted expected
search time for the optimal hierarchy, and the actual (from user testing) expected search time for
the optimal hierarchy. Averages across the three scenarios are also plotted.

For the random hierarchies it took approximately 4 seconds to find an item in the hierarchy.
When the items were rearranged according to the optimization procedure, it took approximately
3 seconds to find an item. This corresponds to a 25% reduction in search time, a substantial
savings when one considers the large number of searches in an MFD.

Also noteworthy is the close correspondence between the predicted and actual performance
on the optimal hierarchy. (By its design, the model must agree perfectly with user performance
on the random hierarchies.) The strong agreement between the predicted and actual performance
suggests that the model of search times accurately captures many of the important characteristics
of hierarchical search.

Finally, we wanted to compare the performance on the random and optimal hierarchies to
what we suspect would be the default ordering in many situations. We measured mean search
times for situations where the hierarchy items were ordered alphabetically on the buttons. Figure
4b shows the averages of three scenarios for the alphabetical, random, and optimal hierarchies.
The alphabetical search times are similar to the random search times, and both are substantially
larger than the optimal search time.

It is instructive to note some characteristics of the optimal layout. With the touchpad mouse
controller, it takes substantial time to initiate a movement. As a result, the optimal layout created
paths for the most frequently used items that involved repeated pressing of the same button.
Figure 5 demonstrates the path for a commonly accessed item. Those items that could not be
placed along a repeating path had paths that minimized movement time. In general, this
organization is consistent with the guidelines suggested by military standards (MIL-STD-
1472D). However, the computational method considers more. Certain buttons were more easily
accessed than other buttons and certain paths in the hierarchy were more often traversed than
other paths. It is no trivial task to decide which set of paths should be associated with which
buttons because changing the location of one item requires additional changes among the
children of that item. At the same time, one cannot identify the best location of items at the top
levels without considering the best locations of items of their children. This type of circular
dependence makes the layout choices very complicated. The computational approach is able to
weigh all these dependencies simultaneously to generate the best overall hierarchical structure.

The overall feel of searching for information was that the target item would likely be found
where the user expected it to be and would be easily accessible. We suspect that in addition to
reducing search times, such optimal hierarchies will produce fewer errors and increase overall
user satisfaction. We have not yet investigated these issues. :

10

i B
:

S T R R Y A
RN W‘W‘;&\%&?
T e

N

X %
3 TR ARAN AR
AT SSNaNI: A AR
SRR W
RRRRRE R
SEERRANN

SERAAINAEN TR LS LR

A2 H

NN RISV AL e &
AIRNRERERARS AR
RO o3 ¢ ot
AT e NEHRHRNENH
SRR R SR AR T NI

N s*‘w. et \
S Amerea
SRR e IR

I ‘ AR

T N

RS
R

Monterrey, Mexico

o

&\ﬁ\;ﬁ‘mﬁ\ SRR
AR

R T RN T L N T T A T A TR TR IR

o N A e

L L Gaaada
S RaREN \ﬂ\a :

3 S vl
SRS R

A
S
SR TR i

TR
e

Monterrey, Mexico

RSN

A PR QR 5 e o
R
T
R LA AR A T SRS AR AT AR Y

k523 Lestihierarchy

TR s
3 _\Q% V’\‘&X\% R A DA BRI R R AR R R R R R SRRy R
5 SRR e
SR VRS SENeanc
oeRNsein? NN R AR

Monterrey, Mexico

ARIaN

S

Figure 5. Hierarchy displays along the path to Monterrey, Mexico, for the optimized hierarchy.
The user needs to make only one movement (from Next target to N_America) and then
simply pushes the same button repeatedly to move through the hierarchy. Items that
cannot be placed in such paths (because of interference from other item paths) are
placed on paths that minimize movement time.

11

Example 2

A second study was run to insure that the methodology was general to a number of different
conditions. For this purpose, three additional users participated. None had extensive practice
working with the geographical hierarchy interface. The programs were run on a PC computer
with a standard hand-held mouse.

For subject 1, motor time estimates were based on the average of five replications for each
movement. The mission scenario was created in the same way as in Example 1. For subjects 2
and 3, motor time estimates were based on the average of three replications for each movement.
The mission scenario consisted of seven different items, with individual items assigned a unique
number of replications ranging from 1-7. For these users there were 28 target searches.

Figure 6 plots the mean search times for the users. The mean search times are generally
smaller than for Example 1, probably indicating the more efficient control of the hand-held
mouse versus the touch-pad device. The effects of optimization are not as strong as in Example
1. This could be because the users were less practiced searching through the hierarchy and made
more mistakes (two participants indicated that they sometimes forgot which continent was
associated with a country). Consistent with this interpretation, user 3 seems to show strong
practice effects. If such a result were verified, it would emphasize the importance of gathering
data from experienced users (which are more likely to mimic crew persons in military aircraft).
There may also be floor effects where the advantage of repeated button pushes is not as great for
the hand-held mouse as for the touch-pad device. Despite these possible confounds, the optimal
hierarchies did result in overall shorter search times than the random hierarchies. For subject 1,
additional explorations of search times with alphabetized hierarchies found mean search times
slightly above 4 seconds.

Conclusions

We have developed a methodology to apply the theoretical framework of Francis and Reardon
(1997) to the design of hierarchy layouts. The key insight in this methodology is to factor
between-item times into motor and categorization times. By measuring motor times separately
and subtracting them from between-item times, the method avoids many complicated issues that
would otherwise prevent accurate prediction of search times.

We developed computer software to explore hierarchy search and gather data for designing
optimal hierarchies. Two pilot studies demonstrate the utility of the methodology. The
hierarchies that minimized predicted search time were found to be substantially better than
random or alphabetically organized hierarchies. The results verified the benefit of optimizing
hierarchy layout and also verified the adequacy of the model at predicting search times.

12

search 3 B Random
time 2.5 4 B Optimal (predicted)
(seconds) 2 - B Optimal (actual)

0 = Y T T —

1 2 3 Average

User

Figure 6. Mean search times for users in the second pilot study. The optimized hierarchies
resulted in shorter search times than the random hierarchies.

To apply the methodology to the design of real MFDs requires gathering motor time in a real
(or accurately simulated) cockpit, accurate measures of between-item search times, and good
measures of the frequencies with which crew members use the various MFD functions. With
this data, it should be possible to optimize the layout of items on buttons and reduce search
times. However, one should consider a number of other issues before applying the optimization
approach to MFDs in cockpits. First, there may be some functions that must be reached within
specific time constraints or they are of no use to the crew (e.g., taking evasive action under fire).
The optimization method should take such constraints into account. Second, the motor time data
may vary depending on the function being searched for. For example, a pilot going through
checklist procedures before take-off may need to spend very little time on flight controls and can
quickly move through button pushes of the MFD. In contrast, a pilot taking evasive actions
under fire may need to keep his hands on flight controls as much as possible, thereby increasing
the average time needed to push buttons on the MFD. The model of search times needs to
consider that some items may be associated with conditions that necessarily slow search time.
With such considerations, the optimization method can design the hierarchy layout to
accommodate those restrictions. Third, real MFDs often place restrictions on which buttons can
be used. For example, in Figure 1A, the entire left side of the display is covered by engine
information and is unavailable for labels linking to other pages. Such restrictions have not been
considered in the hierarchy search programs considered here. Fortunately, there is nothing in the
basic methodology to prevent consideration of these issues. Their resolution may require
additional programming and data collection, but the theoretical framework remains unchanged.

A related issue concerns user variability. Even in the pilot studies, there are notable
differences between participants’ search times (there were differences in the mission scenarios as
well). An MFD in an aircraft must accommodate a variety of users. As such, proper design of
the hierarchy must gather data from a variety of users and create a distribution of motor and
categorization times. With such data, it should be possible to design the hierarchy so that it

13

optimizes performance over the distribution of users. Nothing in the methodology prevents such
design, although it will require that substantial amounts of data be gathered from a variety of

users.

The current work provides the first, to our knowledge, scientific method to optimize
hierarchical layout that considers the details of the human-computer interactions. Our analysis
and experimental results suggest that the method may have a significant impact on usability of
MFDs. Given the growing use of MFDs in both military and civilian aircraft, it is important to
insure that they are designed to allow efficient retrieval of information. Our methodology
provides a means to that end.

14

References

Braithwaite, M., Durnford, S., DeRoche, S., Alvarez, E., Jones, H., Higdon, A., and Estrada, A.
1997. Flight simulator evaluation of a novel display to minimize the risks of spatial
disorientation. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL
Report No. 97-11.

Cook, R. and Woods, D. 1996. Adapting to new technology in the operating room. Human
Factors. 38: 593-613.

Department of Defense. 1981. Military standard: Human engineering design criteria for military
systems, equipment, and facilities. MIL-STD-1472D.

Flanagan, D. 1996. Java in a nutshell. OReilly & Asociates, Sebastopol, CA.

Francis, G. and Reardon, M. 1997. Aircraft multifunction display and control systems: A new
quantitative human factors design method for organizing functions and display contents Fort
Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report No. 97-18.

Hannen, M., and Cloud, T. 1995. A case study in the design and testing of hands-on controls:
The Longbow Apache grip development process. In: Proceedings of the American
Helicopter Society S1st Annual Forum. 1417-1435.

Klymenko, V., Harding, T., Martin, J., Beasley, H., Rash, C. and Rabin, J. 1997. Image quality
figures of merit for contrast in CRT and flat panel displays. Fort Rucker, AL: U.S. Army
Aeromedical Research Laboratory. USAARL Report No. 97-17.

Lee, E., and MacGregor, J. 1985. Minimizing user search time in menu retrieval systems.
Human Factors. 27: 157-162.

Morrison, M. (ed.) 1997. Java Unleashed: Second Edition. Sams.net Publishing, Indianapolis,
IN.

Paap, K., and Roske-Hofstrand, R. 1986. The optimal number of menu options per panel.
Human Factors. 28: 377-385.

Rash, C., and Becher, J. 1982. Analysis of image smear in CRT displays due to scan rate and
phosphor persistence. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory.
USAARL Report No. 83-5.

Reising, J., and Curry, D. 1987. A comparison of voice and multifunction controls: Logic
design is the key. Ergonomics. 30: 1063-1077.

Sirevaag, E., Kramer, A., Wickens, C., Reisweber, M., Strayer, D., and Grenell, J. 1993.
Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics.
36: 1121-1140.

15

Seppala, P. and Salvendy, G. .1985. Impact of depth of menu hierarchy on performance
effectiveness in a supervisory task: Computerized flexible manufacturing system. Human
Factors, 27: 713-722.

Vandierendonck, A., Van Hoe, R., and De Soete, G. 1988. Menu search as a function of menu
organization, categorization, and experience. Acta Psychologica, 69: 231-248.

16

Appendix A. Hierarchy search computer software

The appendices describe the computer software used to investigate hierarchical search. All
software was written in the Java programming language (for a discussion of Java, see Flanagan,
1996; Morrison, 1997). This language was chosen because it has built-in commands for creating
windows, buttons, and handling user interfaces. Java programs also have the advantage of being
machine-independent, meaning that the programs will run on any machine platform (PC,
Macintosh, Unix), provided that platform supports a Java virtual machine.

Java is an object oriented programming language, meaning the programmer defines classes
that contain attributes and methods for manipulating the attributes. One benefit of this
programming approach is that a class can inherit characteristics of another class, thereby
reducing the need to rewrite code. Figure A-1 shows the relationships between the classes used
to investigate hierarchical search.

HierarchyPage
DisplayHiermhy Practice
archTime
TestHierarchy
MotorTime
Setup ptimize
BuildOptimalHierarchy.

Figure A-1. The Java classes written to explore hierarchy searches. HierarchyPage
provides data structures and methods useful for working with an item in the
hierarchy. It is used by many of the other programs. DisplayHierarchy is a
class for basic windowing and interfaces with a given hierarchy and mission
scenario. The classes Practice, SearchTime, TestHierarchy, and MotorTime all
derive from this class and-add or change methods to compute different
statistics and read/write to different files. Setup provides a general scheme for
creating a hierarchy structure. Optimize modifies the general scheme to create
an optimal hierarchy. BuildOptimalHierarchy provides an interface to go
through each step in the process of building a hierarchy optimized for a single
‘mission scenario.

17

Appendix B. Summary of Java classes

This section provides object specifications for each Java class used. For each class, the object
specification provides a brief description of the class' purpose, the attributes associated with the
class, and the methods used by the class to carry out calculations.

Description

. The HierarchyPage class represents an item in the hierarchy. It keeps track of the item name, the
path of button pushes needed to reach the item, the single-number position that corresponds to the path, the
frequency with which the page is searched for, and the level at which the button path terminates.

Attributes

page.

categorize_time | int A statistic of how long it takes to reach the page. Its precise definition
depends on the class that invokes the HierarchyPage.

path int [] An array that describes the sequence of button pushes needed to reach
the page.

num_replics int The number of times the page is to be searched for in the mission
scenario.

replics int The number of times the page has been searched for.

num_buttons int The number of buttons in the hierarchy.

num_levels int The number of levels in the hierarchy.

Methods/Events

getPosition int Returns the position of the page.

getLevel int Returns the level of the page.

setPathfromPosition | void int position | Derives the path of the page from a given

position.
setPath void int[] path Sets the path of the page given an array.

18

Description

The DisplayHierarchy class reads in hierarchical information from a data file and creates a
window with buttons to display the hierarchy. It handles all button presses and relabels the buttons to
emulate movement through the hierarchy. It also provides routines for gathering statistics on user

performance,

"Attributes

num_buttons
num_levels

b

target
search_for_counter
next_target
level
found_target
start_time
num_trials
trial

bp_count

path

page
block
num_blocks

target_index

int

int
Button []
String
Label
Button
int
boolean
long

int

int

int

int []
HierarchyPage[]
int

int

int

g
The number of buttons in the hierarchy.

The number of levels in the hierarchy.

An array of buttons. Hierarchy labels are placed on these buttons.
The name of the item the user is to find.

A label that displays information in the middle panel of the window.
The Next target button.

Identifies the current level of the hierarchy during user search.
Notes whether the user has found the target item.

Used for gathering reaction time data.

The total number of trials in a mission scenario.

The current number of trials that have been performed.

A count of how many button presses have been made during the
current search.

Keeps track of the current sequence of button pushes generated by
the user.

The pages of the hierarchy.

The number of blocks that have been run.

The number of blocks that are to be run during a testing session.
The index of the target item.

19

Methods/Events

acﬁt;n

update_statistics_po
t_target

update_statistics_tar
get

get_data_from_file

write_to_file
findPagewithPath

GetSearchitem
buildDisplayPage

boolean

void

void

void

void

int

void

void

Event e,
Object arg
int [] path

int [] path

int [] path

Handles all user-generated events.

Not implemented.

Not implemented.

Reads in hierarchy and mission scenario data from
the file "data/items. txt".

Not implemented.

Identifies the index of the hierarchy page that has
the given path of button pushes.

Selects the next item for the user to search for.

Relabels all buttons to emulate movement through
the hierarchy.

20

Description

The Practice class instantiates the DisplayHierarchy class. It has no new attributes or methods.

21

Description

The SearchTime class extends the DisplayHierarchy class by providing calculations of the

between-item times.

Attributes

first_replics int

array

item, a coun

provides,
been encountered while the user searches the hierarchy.

A count of how many times the user has encountered any item for the

first time.
first_time int A measure of how the between-item times for the first time an item is
encountered.
Methods/Events

update_statistics_mno
t_target

update_statistics_tar
get

get_data_from_file

write_to_file

void

void

void

int{] path

Calculates between-item time for the current user
selection.

Calculates between-item time for the current user
selection.

Differs from method in super only in the
declaration of some variables.

Writes average between-item times, hierarchical
layout, and mission scenario to file
“data/search_time.txt".

Description

The MotorTime class extends the DisplayHierarchy class. It uses the methods and data structures
in DisplayHierarchy to create a window and hierarchy interface, however, it redefines other methods to
explore movement times between pairs of buttons.

Attributes

num_replics int
targetl String
target2 String
buttonl int
button2 int

found_targetl | boolean

An array that provides, for each pair of buttons, a count of how often
the user has performed the movement between the pair.

The number of times the user must make a movement between each
pair of buttons.

The name of the first button in a movement pair.
The name of the second button in a2 movement pair.
The index of the first button in a movement pair.
The index of the second button in a movement pair.

Set to true when the user selects the first button in the movement pair.

time int {1} An array that provides, for each pair of buttons, the sum of time
required to move between the pair.
stat int [I] An array that provides, for each pair of buttons, the sum of time squared
required to move between the pair. Used to calculate standard
deviations of motor times.
Methods/Events

action

GetSearchPattern

get_data_from_file

write_to_file

boolean

void

void

void

Evente, Handles all user-generated events.

Object arg
Randomly selects the next pair of buttons for the
user to make a movement.
Sets up hierarchy, does not actually read from a
file.

Writes, for every pair of buttons, the average
motor time and the standard deviation to file
"data/motor.txt".

23

Description
The TestHierarchy class extends the DisplayHierarchy class by providing calculations of the time

needed to find the target item.

Attributes

The total time required to search the mission scenario with the original
hierarchical layout. Read in from a data file.

The predicted time required to search the mission scenario with the
optimal layout. Read in from a data file.

Methods/Events

update_statistics_tar
get

get_data_from_file

write_to_file

void

void

void

int{] path

Calculates the time taken by the user to find the
target item.

Reads in the optimal hierarchical layout and
mission scenario information from the file
"data/optimal.txt".

Writes mean search time data (original, predicted,
actual) to file "data/mean_time. txt".

24

Description

The Setup class reads in user supplied data files, which define a hierarchy, and creates a mission
scenario. It modifies the hierarchy layout so it is partly randomized, and writes the hierarchy layout and
mission scenario information to a file.

Attributes

num_buttons The number of buttons in the hierarchy.

num_levels int The number of levels in the hierarchy.

num_labels int The number of pages in the hierarchy.

page HierarchyPage [] | The pages of the hierarchy.
Methods/Events

Reads in hierarchical information,
the file "Item_names/level0.txt". Then reads in
other files with names matching the item names.

create_new_hierarchy | void Randomizes the hierarchy layout and defines a
mission scenario.

write_to_file void Writes the hierarchical layout and mission
scenario information to the file "data/items. txt".

findPagewithPath int int [] path Identifies the index of the hierarchy page that has
the given path of button pushes.

swap void int level, int | Swaps the paths of pages item and new_item.

item, int Also changes the paths of the children of these
new_item items to keep the hierarchical order intact.

25

Description

The Optimize class extends the Setup class. It reads from files between-item time data and motor
time data. It calculates categorization time data and defines a model of search times. It then uses an
optimization technique to find a hierarchical layout that minimizes predicted search time. The optimal
hierarchy (along with its mission scenario and predicted search time) is written to a file.

Attributes

motor_time

original est | int

current_est int

local_minima | int

The time needed to move between each pair of buttons.
The time needed to go through the mission scenario with the original layout.

The time needed to go through the mission scenario with the original layout.
Using class computations. Useful for comparing to ast to detect bugs.

The predicted search time for the current hierarchical layout.

The predicted search time for the best hierarchical layout yet found by the
optimization routine.

Methods/Events

local_minima_chec

computed_expecte
d_search_time

write_to_file

swap

Reads in hierarchical, mission scenario, and between-
item time data from file "data/search_time.txt". Creates
hierarchy pages. Also reads in motor time data from
file "data/motor.txt".

void Computes categorization time and stores it in hierarchy
pages. Uses an optimization procedure to find the hier-
archical layout that minimizes predicted search time.

boolean Retumns true if the current hierarchy layout is a local
minima of predicted search time.

int Retumns the predicted time (in milliseconds) for the user
to search through the mission scenario with the current
hierarchy layout.

void Writes the hierarchical layout and mission scenario
information to the file "data/optimal.txt".

void int level, int | Swaps the paths of pages item and new_item. Also

item, int changes the paths of the children of these items to keep
new_item the hierarchical order intact.

26

Description

The BuildOptimalHierarchy class provides an interface to guide a user through the creation of
gathering all needed data and testing an optimal hierarchy. It calls each class as needed.

Attributes

Button [] An array of buttons.

Methods/Events

Handles all user-generated events. Calls appropriate
Object arg | classes according to button.

27

Appendix C. J rce cod

This section provides the source code of each Java class.

I* ciass HierarchyPage

This class provides an object to contain all the data relevant to a specific page
in a hierarchy. This class is used by several different programs.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
uniess so designated by other documentation.

*

class HierarchyPage
{
int num_levels, num_buttons;
String name;
int categorize_time;
int replics, num_replics;
int path[] = new int [num_levels],

HierarchyPage(int num_leveis, int num_buttons, String name, int categorize_time,
int replics, int num_replics)
{
this.num_levels = num_levels;
this.num_buttons = num_buttons;
this.name = name;
this.categorize_time = categorize_time,
this.replics = repiics;
this.num_replics = num_repiics;

1/ returns the position that corresponds to the page's path
int getPosition()
{

int position=0;
int temp_position=0, sum=0;
for(int i=0;i<num_leveis;i++)
if(path{f] 1= -1)
{
temp_poskion = temp_position*num_buttons + path{i];
sum += (int)Math. pow((double)num_buttons,(double)(i));

}
position = temp_position+sum;
retum position;

}

{/ returns the level of the page
int getLevel()
{

int levei=-1;
for(int i=0;i<num_levels;i++)
{

H(pathfl] == -1)

28

level = i-1;
=num_levels;

}

retumn level;

}

1/l computes the page's path for the given index
/1 this method must be explicitly called
void setPathfromPosition(int position)
{
1l set default
for(int i=0;i<num_levels;i++)
. pathli] =-1;
it size[] = new int [num_levels];
int level=0,sum=0;

// compute range of indices for each level
for(int i= O;i<num_levels;i++)

size]i] = (int)Math.pow((double)num_buttons,(double)i);
sum += size[i};

if(position < sum)
{

level = i;
i=num_levels;

}

}
// work backwards through levels to find path
for(int i=level;i>0;i—)
{
/! find position in level i
int temp_position = position - (sum-sizefi]);
path[i-1] = (int)}{temp_position%num_buttons),
I/ reset index as parent index
sum=0;
for(int j=0;j<i-1;j++)
sum+=sizefi];
position = sum + (int)(temp_position/num_buttons),
}
}

1/ this method sets the path by copying an aray
void setPath(int]] temp)

for(int i=0;i<num_levels;i++)

path[i] = temp{i};

29

import java.awt.*;

import java.util. Random;
import java.util.Date;
import java.io.*;

F* ciass DisplayHierarchy

This class sets up a dispiay screen with buttons and then specifies targets

for

the user to find in the hierarchicy. Data on the hierarchy is read in from the file

“data/items.bct”. No output file is created.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author

and should not be construed as an official Department of the Army position, or decision,

unless s0 designated by other documentation.
*/

public class DisplayHierarchy extends Frame

{

Random randGen = new Random();
int num_buttons, num_levels;
int num_labels;

Button bf];

String target;

Labeti search_for,counter;
Button next_target;

int level=0;

boolean found_target=true;
long start_time;

int num_trials=0, trial =0,

int bp_count=0;

int num_blocks=1;
int target_index;

?ublic DisplayHierarchy(String title)
super(title);

liset size of SearchTime window
this.resize(600,400);

1/ Set font

Font font = new Font("Helvetica™, Fort. PLAIN,24);

setFont(font);

{//ICreate menubar

MenuBar menubar= new MenuBar();
this_setMenuBar(menubar);

/iICreate file menu. Add Close.
Menu file=new Menu("File”);
file.add(new Menultem("Close"));
menubar.add(file);

Random randGen = new Randony);
get_data_from_file();

// define range of path variable for later use
path = new int [num_levels);

30

b=new Button[num_buttons];
for(int i=0;i<num_buttons;i++)
bfi] = new Button(" %

//Establish panels for buttons and info
Panel left = new Panel();
Panel right = new Panel();

left.setLayout(new GridLayout(num_buttons/2,1,10,20));
for(int i=0; i<num_buttons/2;i++)
left.add(b{i]);

right.setLayout(new GridLayout(num_buttons/2,1,10,20));
for(int i=num_buttons/2; i<num_buttons;i++)
right.add(b[i));

this.setlayout(new BorderLayout(S,5));
this.add("West" left);
this.add("East", right);

1/ Set up everything eise on bottom panel

Panel bottom= new Panel();
bottom.setLayout(new GridLayout(2,1,10,20));
search_for = new Label ("Press button to start ");
Panel next = new Panel();

next.setL.ayout(new FlowLayout(Fiowl.ayout. CENTER));
next_target = new Button("Next target™);
next.add(next_target);

counter = new Label (™+(num_trials));
bottom.add{next);

bottom.add(counter);
this.add("Center”,search_for),

this.add("South” bottom);

this.pack();

this.show();

public static void main(String argsf])
{

DisplayHierarchy f = new DisplayHierarchy("Hierarchy™),

}

/* This method handles all user interactions with the hierarchy.
It changes button labels according to movement through the hierarchy.
It notes when the target has been found.

It calls methods for measuring various response times. */
public boolean action (Event e, Object arg)

{

if(e.target instanceof Menultem)

{ /\Watceh for quit command
String label = (String) arg;
if(label.equals("Close™))

y dispose();

if(e.target instanceof Button)
String s= (String)arg;
if (e.target == next_target && found_target)
if (trial < num_trials)

GetSearchitem(); /] Get new target
found_target=false;

}
else // see if another block is needed

{
block++;

31

i(block==num_blocks)
{

search_for setText("All done... Thanks!™);
write_to_file();
}

olse #(block <num_blocks) // reset everything for the next block

{
ssarch_for setText("Next block...");
:u(int =0;i<num_labels;i++)
page(i].repiics = 0;
page{i).categorize_time=0;

trial =0;
found_target=true;
}
}
}

?(Is.equale(target))

/Af not target, act on pushed button to move through hierarchy
for(int i =0;i<num_buttons;i++)

if(e.target == bfi)

{

path{bp_count] = i;
update_statistics_not_target(path);

// Relabel buttons to emulate moving through the hierarchy
bp_count++;
11 if go through bottom of hierarchy, reset to top page
H(bp_count>=num_levels-1)
{

bp_count=0;

for(int [=0;j<num_leveis j++)

path{j] = -1;

}

buikdDispiayPage(path, bp_count, b);

retum true;
}

}
11 |f target, record between-item time and prepare for next item
eise if(Ifound_target) // ignore repeated pressings of target button

for(int i =0;i<num_buttons;i++)
;f(c-hmd == bfi)

found_target=true;
path{bp_count] = i,
update_statistics_target(path);
bp_count++;
#(bp_count>=num_levels)
(bp_count=0;

for(int j=0;j<num_leveis j++)

path{j] =-1;

}

}
) search_for.setText("Press ‘Next target™);

-
}

/I This method updates the statistics needed when there is a button press that

32

1 does not resutt in the target being found
public void update_statistics_not_target(int{] path)
{

}

// This method updates statistics for a button press that
// results in the target being found.

public void update_statistics_target(int]] path)

{

}

I/ This method reads data from the input file

public void get_data_from_file()

{

:ry

String filename = "data/items.txt”;
File f = new File(filename);
FilelnputStream labels = new FilelnputStream(f);
DatalnputStream label_file = new DatalnputStream(labels);

/I Get num_levels and num_buttons

String s = label_file.readLine();

Illparse out needed info

// get num_levels

int end = s.indexOf(",”);

String temp = s.substring(0,end);

num_levels = (int) Float.valueOf(temp).fioatValue();

// get num_buttons
temp = s.substring(end+1);
num_buttons = (int) Float.valueOf(temp).fioatValue();

I/ Compute number of labels in Hierarchy for later use
for(int i=0;i<num_levels;i++)
num_labels += (int)Math. pow((double)num_buttons,(double)i);

Il Create pages
page = new HierarchyPage[num_labels];

1! get page info from data file
for(int i=0;i<num_labels;i++)

s = label_file.readLine();

Ilparse needed information

I/ get name

int name_end = s.indexOf(",");

String name = s.substring(0,name_end);

1/ get position

int position_end = s.indexOf("," name_end+1);
String s2 = s.substring(name_end+1 position_end);
int position = (int) Float.valueOf(s2).floatValue();
/l gettime (always equals 0)

int time_end = s.indexOf("," position_end+2);
String s3 = s.substring(position_end+2 time_end);
int time = (int) Float.valueOf(s3).floatVaiue();

Iiget replications

int reps_end = s.lastindexOf(",");

$2 = s.substring(reps_end+1);

int reps = (int) Float.valueOf(s2).floatValue();

num_trials += reps; // keep track of how many trials there will be
{/ set up page info

page{i] = new HierarchyPage(num_levels, hum_buttons, name, time,

0, reps)
pagefi].setPathfromPosition(position);

33

}
}
;:dch(Empﬂon e)

System.out.printin("Error: "+e.toString());
}

}

// This method writes data to the output file
public void write_to_fliie()
{

}

// This method identifies the index of the page that has the specified path
I/ of button presses.

public int findPagewithPath(int[] path)

{

int kem=-1;

for(int i=0;i<num_labeis;i++)

(boolean found_jt= true;
int checlq] = new int [num_levels);
check = page{i]. path;
for(int j=0;j<num_leveis;++)

g(d'dﬂ] 1= path{])

found_it=faise;
}

l}f(found_l)
Rem =i;
=num_labels;
}
}
retum kem;

}

// This method gets the next target item for the user to search for. It considers
1/ how often sach item is to be searched.

public void GetSearchitem()

{
// pick an item at random, but not item zero

int item = (int)}(Math.abs(randGen.nextint()%(num_labels-1))+1;

// make certain the item is to be searched for
while(page[item).replics >= page{item].num_replics)
tem = (int)}(Math.abs(randGen.nextint()) %(num_labels-1))+1;

page{item].replics++;

target = pagefiem].name;
target_index = item;

/! get button-presses and level for selected page
int temp(] = new int [num_leveis);

temp = page(kem].path;

level = pagefitem].getievei();

11 if city, identify country to sase search
String s=™,
H(lovel==2){

{/ find page that corresponds to parent
int parent_path[] = new int [num_leveis};

34

}

for(int i=0;i<num_levels;i++)
parent_path{i] = temp{i];
parent_path[level] = -1;

int parent_index = findPagewithPath(parent_path);
s =", “+page[parent_index].name;
}

trial++;
search_for setText(target+s);
counter.setText(™+(num_trials-trial));

for(int i=0;i<num_levels;i++)

pathfi] =-1;

bp_count=0;

buildDisplayPage(path,bp_count,b);

Date now = new Date();

start_time = now.getTime(); // start clock for first pair of button presses

}

// This method builds the display for the appropriate level and path taken
// by the user as he moves through the hierarchy

void buildDisplayPage(int [] path, int level, Button[] b)

{
int [] temp = new int [num_levels];

for(int i=0;i<num_levels;i++) // copy path to dummy array
tempfi] = pathi);

// find label for each button
for(int k=0;k<num_buttons k++)

tempflevel] = k;
bik].setLabel(page[findPagewithPath(temp)].name);
}
}

35

import DisplayHierarchy,
I* ciass Practice

This class sets up a display screen with buttons and then specifies targets for
the user to find in the hierarchicy. The hierarchical information is read in from
the file “data/items.tdt”. it does not produce any output files.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and shouid not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

*
public ciass Practice extends DisplayHierarchy
?ublc Practice(String title)

) super(titie);

public static void main(String args{])
t Setup stp = new Setup(); // Create mission scenario
Practice f = new Practice("Practice”);
}
}

36

import java.awt.*;

import java.util. Random;
import java.util.Date;
import java.io.*;

import DisplayHierarchy;

/I* class SearchTime

This class sets up a display screen with buttons and then specifies targets for
the user to find in the hierarchicy. The time between each pair of button presses
(between-item time) is noted and coded by the label of the second button.
Average between-item times are stored in the file "data/search_time. t«t".

Wiritten by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

public class SearchTime extends DisplayHierarchy

{

int [} replics;
int first_replics;
int first_time;

public SearchTime(String title)

super(title);

public static void main(String args[])
{

Setup stp = new Setup(); // create mission scenario
SearchTime f = new SearchTime("Get between item time");

}

/I This method updates the statistics needed when there is a button press that
// does not result in the target being found

{// Overrides the method in super

public void update_statistics_not_target(int[] path)

{

1/ verify that we are on the right path. Do not gather data for mistakes
boolean error = false;
for(int =0;i<=bp_count;i++)

if(pathi) != page[target_index].path[i})
error=true;

if(lerror)

int index = findPagewithPath(path);
if(index !=-1) // catch bug
{
Date now = new Date();
// calculate between-item time
pagefindex].categorize_time += (int){(long)now.getTime() - (long) start_time);
start_time = (long)now.getTime();
if(block == num_blocks-1) // keep track of encounters on last block
replics{index]++;
System.out.printin(page[index].name+" "+pagefindex].categorize_time+" "+replics{index]);

/ update estimates for first time encounters with an item

37

8

:f(bloekno&&npla(hdcx]-ﬂ)

first_time += page{index).categorize_time;
first | | replics++;
}
}
}
}

{/ This method updates statistics for a button press that
{/ results in the target being found.
/1 Overrides method in super
rawcvouupdm_m_mmpdh)

Date now = new Date();

int index = findPagewithPath(peth),

H(index != -1)
{

page{index).categorize_time += (N)((long)now getTime() - (long) start_time);
start_time = (long)now.get
if(block == num_bilocks-1) //koeptnckofmnmonhltbloek

repiics{index]++;

System.out.printin(page{index].name+" "+page{index].categorize_time+" “+replics{index]);
// update estimates for first encounters with an item

if(block==0 && replics{index]==1)

{

first_time += page{index).categorize_time;
first_replics++;
}
}
}

I/ This method reads data from the input file
1/l Overrides method in super
public void get_data_from_file()

num_blocks = 2, 1/ ovetrides default in super
try
{
String filename = “data/tems.txt”,
File f = new Fiie(filename);
FileinputStream labeis = new FilelnputStream(f);
DatainputStream label_file = new DatainputSiream(labels);

// Get num_levels and num_buttons

String s = iabel_flle.readLine();

liparse out needed info

1l get num_levels

int end = s.indexOf(",");

String temp = .substring(0,end);

num_levels = (int) Float.valueOf(temp).floatValue();

1/ get num_buttons
temp = 8. wbdmu(endﬂ)
num_buttons = (int) Float.valueOf(temp).floatValue();

// Compute number of labels in Hierarchy for later use
for(int i=0;i<num_levels;i++)
num_iabeis += (int)Math.pow((double)num_buttons,(double)i);
1/ Create pages
page = new HierarchyPage[num_labeis];
replics = new int{num_labeis]; // a counter for how often sach page is encountered

// get page info from data fiie
for(int i=0;i<num_labels;i++)

s = label_file.readLine();

38

}

}

llparse needed information

// get name

int name_end = s.indexOf(",);

String name = s.substring(0,name_end);

/I get position

int position_end = s.indexOf(",",name_end+1);
String s2 = s.substring(name_end+1 position_end),
int position = (int) Float.valueOf(s2).floatValue();
/i gettime (always equals 0)

int time_end = s.indexOf(",",position_end+2);
String s3 = s.substring(position_end+2.time_end);
int time = (int) Float.valueOf(s3).floatValue();

Iiget replications

int reps_end = s lastindexOf(",");

§2 = s substring(reps_end+1);

int reps = (int) Float.valueOf(s2).floatValue();

num_trials += reps; // keep track of how many trials there will be

1l set up page info
pageli] = new HierarchyPage(num_levels, num_buttons, name, time,

0, reps);
pageli]. setPathfromPostion(position);

}
}
catch(Exception e)

System.out. printin("Error: "+e.toString(});
}

// This method writes data to the output file
// Overrides method in super
public void write_to_file()

}

/1 Open output file
try

{
FileOutputStream out_file;

out_file = new FileOutputStream("data/search_time.txt"),
PrintStream out2 = new PrintStream(out_file);

! Write info to data file
StringBuffer sb1 = new StringBuffer(num_levels+", "+num_buttons);
out2.printin(sb1 toString());
int current_est=0;
System.out.printin(first_time+" "+first_replics);
for(int i=0;icnum_labels;i++)
{
cumrent_est += pagel[i].categorize_time;

if(replics{i}==0)
{

replicsfi] = first_replics;
page{i].categorize_time = first_time;

}

StringBuffer sb = new StringBuffer(pageli].name+", "+pageli].getPosition()+
*, "+(int)((double)pageli].categorize_time/(double)replics[i})+", "+
pagefi].num_replics);

out2.printin{sb.toString());

}
StringBuffer sb3 = new StringBuffer("Total search time = "+current_est);
out2. printin{sb3.toString());

}
catch(Exception e)

System.out.printin("Ervor: "+e.toString());
}

39

import java.awt.*;

import java.util. Random;
import java.util. Date;
import java.io.*;

import DisplayHierarchy,

I* class MotorTime

This class sels up a display screen with buttons and then specifies movements for
the user. The time to complete each movement is noted. The resuiting data is stored
in the file "data/motor.bd”.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and shouid not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

¢/
public class MotorTime extends DisplayHierarchy

{
String target1, target2="Next target”;
int button1,button2;
boolean found_targeti=true;
int replics{]f};
Int ime{]);
Int stat{]f];
int num_replics;

public Motor Time(String titie)
{
super(titie);

}
public static void main(String args{]) {

Frame f = new MotorTime("Motor time data”);
}

// This method handies all user interactions with the button presses.

/1 it notes the time to make the first button press, the second button press, and
1/ it stores the difference in an array for statistics.

public boolean action (Event e, Object arg)

{

String s="",
if(e.target instanceof Button)
s = (String) arg;

if(s.equals(target!) && ifound_targett)
{ 11 if fiest target is selected
Date now = new Date();
start_time = (long)now.getTime(); // note time
found_targeti=true;
retumn true;

if(s.equais(target2) && found_target1)
{ /1 |f found second target after finding first
Date now = new Date();

// Update statistics
if(trial>0)
{ //but not for first press of "Next Target” button
// Save search time in array for later statistical computation
time[button1][button?] += (int)((long)now.getTime() - (long) start_time);
statjbutton]button?] += (int)Math_pow((doubie)((long)now.getTime() -
(long) start_time),2); // to calculate variance

/MWhen all done write statistics to file
if(trial == num_trials)
write_to_file();

if (trial < num_trials)

GetSearchPattern(); // Get new movement pattern
else

search_for setText("All done...Thanks!");
found_targeti=false;

}

if(e.target instanceof Menultem){ /Match for close command
String label = (String) arg;
if(label.equals("Close"))dispose();

retum false;
}

1/ This methods sets up everything. It takes its name from the super, where information
//is read in from a file. There is no file-input here.

public void get_data_from_file()

{

num_buttons =8;
num_leveis =1,

// Compute number of labels in heirarchy for later use
for(int i=0;i<=num_levels;i++)
num_labels += (int)Math.pow((double)num_buttons,(double)i);

// create variables for statistical calculations

replics = new int fnum_buttons+1][num_buttons+1];

time = new int [num_buttons+1][num_buttons+1];

stat = new int [num_buttons+1}inum_buttons+1);
num_replics=3;

trial= 0;
num_trials=num_replics*(num_buttons+1)*(num_buttons);

// Do not need movements ending in "Next Target”, so fill replic counter for
// those movements
for(int k=0;k<num_buttons+1;k++)

replics{kj{num_buttons] = num_replics;

/I This method writes statistics on motor time to a file
public void write_to_file()
1/ open output file
:ry
FileOutputStream out_file;
out_file = new FileOutputStream("data/motor.txt™);
PrintStream out2 = new PrintStream(out_file);

for(int i=0;i<num_buttons+1;i++) 11 go through every pair of button pushes
for(int j=0;j<num_buttons+1j++)
{

double average = 0.0;
double st_dev = 0.0;

41

}

// Calculate average
average = (double)time{i)j)/(double) num_replics;

// Caiculate standard deviation
¥(num_replics>1)
ot_dev = Math.sqrt(((double)etat{if] -
(double)num_replics“Math. pow(average,2))/(double)(num_repiics-1)),

/I Write to file the page index, average, standard deviation

StringBuffer sbS = new StringBuffer(i+" "+{+" “+average+" "
+st_dev),

/] Open output file

) out2 printin{sb5 toString());
deh(Empﬁon ox)
{

System.out.printin("Error: *+ex.toString();

I/ This method identifies a pair of button pushes for the user to make
{/ it takes into account how many times each pair must be performed
public void GetSearchPattern ()

{

// Get new pair
buttont = (int)(Math.abs(randGen.nextint())%{num_buttons+1));
button2 = (int)(Math.abs(randGen.nextint()%(num_buttons+1));

zvm.(npieqbwom Jbutton2)>=num_replics)

button1 = (int)(Math.abs(randGen.nextint() %(num_buttons+1));
button2 = (intMath.abs(randGen.nextint() %(num_buttone+1));
}

replics{button1 fbutton2}++; // Update replication count for selected pair
triale+; // Update trial counter

I/ specify targets

if(button1 == num_buttons) // button 8 is "Next target”
target1 = "Next target”;

eise
target1 = "+buttont;

f(button2 == num_buttons)
target2 = "Next target”,

eise
target2 = "+bulton2;

// put labeis on buttons

for(int [=0;j<num_buttons j++)
bij]-setLabei(™+});

search_for.setText(target!1 +” —> “+target2);
counter.setText(™+(num_trials-trial));

42

R

import java.util.Date;
import java.io.*;
import DisplayHierarchy;

I* class TestHierarchy

This class reads in hierarchy data from “data/optimal.txt” and creates a display with buttons
to allow the user to serach for items in the mission scenario. The total search time
is computed and the mean search time is written to the file “data/mean_time.bd".

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

*

public class TestHierarchy extends DisplayHierarchy

{

int original_est;
int est;

public TestHierarchy(String titie)
superi(title);

pubiic static void main(String args{])

TestHierarchy f = new TestHierarchy("Get between item time");
}

// This method updates the statistics needed when there is a button press that
1/ does not result in the target being found

// Overrides the method in super

public void update_statistics_not_target(int]) path)

{

}

I/l This method updates statistics for a button press that
// results in the target being found.
I/ Overrides method in super
public void update_statistics_target(int{] path)
{

Date now = new Date();

int index = findPagewithPath(path);

if(index 1= -1)

pagefindex].categorize_time += (int){(long)now.getTime() - (long) start_time);

I/ This method reads data from the input file
{/l Overrides method in super
public void get_data_from_file()
{
num_blocks = 2, 1/ overrides default in super
}ry
String filename = "data/optimal.txt™;
File f = new File(filename);
FileinputStream labels = new FilelnputStream(f);

43

DatainputStream label_file = new DatainputStream(labels);

1/ Get num_levels and num_buttons
String s = label_file.readLine();

/fparse out info

1/ get num_levels

int end = 3.indexO1(",");

String =g, 0,end);

num_levels = (int) Flost.valueOf(temp).floatValue();

{/ get num_buttons
temp = 8. wbwing(wﬂ
num_buttons = (int) Float.valueOftemp).floatValue();

// Compute number of labels in Hierarchy for later use
for(int i=0;i<num_levels;i++)
num_labels += (int)Math.pow((double)num_buttons, (double)i),

// Creste pages

page = new HierarchyPage{num_labels];

path = new int [num_levels);

1/ get page info from data file

for(int i=0;i<num_labels;i++)

{
s = label_file.readLine();
liparse needed information
i/ get name
int name_end = s.indexOf(",");
String name = s.substring(0,name_end);
1/ get position
int position_end = s.indexOf("," name_end+1);
String 82 = s.substring(name_end+1 position_end);
int position = (int) Float.valueOf(s2).floatValue();
1l get time
int ime_end = s.indexO1("," position_end+2);
String s3xs, substring(position_end+2.time_end);
int ime = (int) Float.valueOf(s3).floatValue();
liget
int reps_end = s.lastindexOf(",");
82 = g.substring(reps_end+1);
int reps = (int) Float.valueOf(s2).floatValue(),

num_trials +=reps; // keep track of how many triais

I/ set up page info
page{i] = new HierarchyPage(num_leveis, num_buttons, name, time,
0, reps);
) page]i].setPathfromP osition(position);

/] Get original search time for random hierarchy
s = labei_file.readLine();

end = s lastindexOf(" *);

temp = s.substring(end+1);

original_est = (int) Float.valueOf(temp).floatVaiue();
1/ Get predicted ssarch time for optimal hierarchy

s = label_file.readline();

end = s.lastindexOf(" *);

temp = s.substring(end+1);

est = (int) Float.valueOf(temp).floatVaiue(),

Z:dch(Empﬂon e)

¢ System.out.printin("Error: “+e.toString();
}
{/ This method writes data to the output file

{// Overrides method in super
public void write_to_file()

{/ Open output file
try

{
FileOutputStream out _file;
out_file = new FileOutputStream("data/mean_time.tdt");
PrintStream out2 = new PrintStream(out_file);

1/ Write info to data file
// add up actual search times, gathered with this program
int actual_est=0;
for(int i=0;i<num_labels;i++)
actual_est += pageli].categorize_time;

StringBuffer sb3 = new StringBuffer("In secondsfitem - Original search time = *+
((double)(original_est/num_trials)/1000)+
"\nExpected search time = "+((double)(est/num_trials)/1 000)+
"\nActual search time = "+((double)(actual_est/num_triais)/1000));

out2. printin{sb3.toString(});

}
catch(Exception e)

System.out.printin("Error: "+e.toString(});

}
}

45

import java.util. Random;
import java.util. Date;
import java.io.*;

P cisss Setup

This class reads in user-supplied data files that define a hierarchical structure.
It re-orders the hierarchical structure, defines a mission scenario, and writes
all the information to the file “data/tems txt™.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
uniess 0 designated by other documentation.

*/
public class Setup
{

int num_buttons, num_levels,
int num_labels;

HierarchyPage page(];
public Setup(
{

get_data_from_file();

create_new_hierarchy();
}

public static void main(String args{])
{
Setup f = new Setup();

I* This method reads in data from specified fiies. Names of items in the first level are

in a file called “ltem_names/levelO.tx”. The names of items in the subsequent leveis are
in files with filenames “ltem_names/<item_name> bdt", where <tem_name> is given

in the levelO.txt file. */

public void get_data_from_file()

// Get info from category data files

try
{
String filename = “item_names/level0.bd";
File f = new File(filename);
FiieinputStream labeis = new FileinputStream(f),
DatainputStream label_file = new DatainputStream(labeis);

{/ Get num_leveis and num_buttons
String s = iabel_flie_readLine();

lparse out info

1/ get num_levels

int end = .indexOf(",");

String temp = 8.substring(0,end);

num_leveis = (int) Float.valueOf(temp).floatVaiue();
/] get num_buttons

temp = s substring(end+1);

num_buttons = (int) Float.valueOf(temp).floatValue();

46

/l Compute number of labels in Hierarchy for later use
for(int i=0;i<num_levels;i++)
num_labels += (imt)Math.pow((double)num_buttons,(double)i);

I/ Create pages
page = new HierarchyPage[num_labels];

for(int i=0;i<num_labels;i++)

pageli] = new HierarchyPage(num_levels, num_buttons, ™, 0, 0, 0);
pagefi}.setPathfromPosition(0);

I/ Load in tem names and position in Hierarchy, first level only
System.out.printin("Loading names from file.”);
for(int j=1;j<num_buttons+1j++)

s = label_file.readLine();

/] set paths

int [] path = new intinum_levels];
path = pagefj] path;

path[0] = j-1;

pagefj].name = s.trim();
}

}
catch(Exception e)

System.out.printin("Error: "+e.toString());
}

/I Now load in other items using name from parent as filename
for(int item=1;tem<num_labels;item++) //cycle through all pages, except top, which is nothing
{

int level= page[item].getLevel();

if(level < num_levels-2 && level 1=-1) // set children of parent
{

1/ get path for parent page

int]] temp = new intinum_|levels);

temp = pagefitem].path;

String s = page{item].name;
if(s.length()>1) / do not look for file if filename is blank
{

try

{
FilelnputStream labels = new FilelnputStream("ltem_names/"+s+".tt");

DatalnputStream label_file = new DatalnputStream(labels);
for(int j=0,j<num_buttons;j++)
{

String s1=label_file.readLine()+™;

if(s1.length()>0 && !s1.equals("nuil))
81 = s1.trim();

else
si=""

//build path for child page

int]] temp1 = new int{num_levels};

for(int k=0;k<num_levels;k++)
temp1[k] = tempik];

temp1flevel+1] =j;

1! find next unused page and put item there
for(int m=1;m<num_labels;m++)

{
int [] int2 = new intinum_levels};

47

int2 = page{m).path;

boolsan found=true;
for(int n=0;n<num_leveis;n++)
{

if(int2]n] 1= -1)
{

found = false;
n=npum_levels;

.

page{m].setPath(temp1);
page{m).name = s1;
m=num_labeis;

}

}
}

}
catch(Exception e)
System.out. printin("Error: “+e.toString());

}
else // if fiename is blank, build blank pages undemeath
for(int j=0;j<num_buttons j++)
{
Strings1 ="";

/fbuild path for child page

intf] temp1 = new intinum_leveis];

for(int k=0;k<num_leveis k++)
temp1(k] = tempKk];

tempiflevei+1]=j;

1/ find next unused page and put item there
for(int m=1,m<num_labeis;m++)
{

int [] int2 = new intinum_levels);

int2 = page{m}.path;

boolean found=true;
for(int n=0;n<num_leveis;n++)

ifint2{n] 1= -1)

found = false;
n=num_levels;
}
)
;f(found)

page{m] setPath{temp1);
page{m].name = s1;
m=num_labeils;

I* This method scrambies the order of the hierarchy so & is partially randomized.
it aiso defines the mission scenario.*/
pubiic void create_new_hierarchy()

Random randGen = new Randomy();

/I Now scramble paths to make a random hierarchy
System.out.printin("Randomizing hierarchy™);
for(int item=1;tem<num_labels;item++)
{
1/ get button-presses and level for selected page
int temp{] = new int [num_levels];

temp = pagejitem).path;
int level = page{item].getLevel();

//now pick a new button from the same branch in the hierarchy

int new_btn = tempflevel];
while(new_btn == templievel])
new_btn = (int)(Math.abs(randGen.nextint()) %num_buttons);

I/l identify path for new item

int new_temp(] = new int [num_levels];

for(int i=0;i<num_levels;i++)
new_templi] = tempfi};

new_templlevei] = new_btn;

{// now find the item with this path
int new_item = findPagewithPath(new_temp);
swap(level item,new_item);

}

I/ Fix naming problem (bug-fix)
for(int i=0;i<num_labels;i++)
{

if(pageli].name.equals(" "))
pagefil.name="",

I/l Now set up replications
System.out.printin("Creating mission scenario”);
//System.out.printin("Setting up replication data.”);
/1 7 tems with corresponding replics

for(int i=1;i<=7;i++)

int item = (int)(Math.abs(randGen.nextint())%(num_labels-1))+1;
while(pagefitem].num_replics !=0 || page[item].name.length(}<1)

item = (int}(Math.abs(randGen.nextint())%(num_labels-1))+1,
pagefitem].num_replics = i;

// Write data to file
write_to_file();

I* This method writes the created hierarchy to the file "data/items.bd”. */
public void write_to_file()

/] Open output file

zry
FileOutputStream out_file;
out_file = new FileOutputStream(“data/items.txt™);
PrintStream out2 = new PrintStream(out_file);

{/ write new Hierarchy to file

StringBuffer sb1 = new StringBuffer(num_levels+", "+num_buttons);
out2. printin(sb1 toString());

for(int i=0;i<num_labels;i++)

{

49

}

StringBufier sb = new StringBuffer(pagef{i].name+", "+page{i].getPoskion()+
*, “+page{i].categorize_time+", “+page(i].num_repiics),
out2.printin{sb.toString());
}

StringBuffer sb3 = new StringBuffer("Original search time = “+0+™n"+
“Estimated new search time = “+0);
out2.printin{sb3.toString());
}
catch(Exception e)

System.out.printin("Efror. “+e.toString();

{/ This method takes a vector describing a path of button pushes and returns the index
/ of the item with that path.
?ubkmMththmmpam

}

int kem=-1;

for(int i=0;i<num_labels;i++) // go through all kems in the hierarchy
{
boolean found_it= true;
int checki] = new int [num_levels);
check = page]i].path;
for(int j=0;j<num_leveis;j++) // go through path of sach tem to see if it matches

;f(dmkﬂl I= path{l])

found_it=faise;
}

}
if(found_it)
{
Rem = ;
=num_labels;
}

retum item;

// This method swaps the hierarchical positions of two tems. It is
I/ complicated because it also has to swap all the children of those tems.
pubiic void swap(int level,int item, int new_item)

{

int temp{] = new intfnum_levels);
int new_temp{] = new int[num_leveis];
int checki]] = new int [num_labeis][];

for(int i=0;i<num_labels;i++)
checi{l] = new intinum_leveis];

temp = page[iem).path;
new_temp = page{new_item].path;

I/ first copy all paths into a large aray with changes made
for(int i=0;i<num_labels;i++)
¢ boolean changei=true, change2=true;

int hoid[] = new int{num_levels];

hold = page{i). path;

for(int j=0;j<num_leveis j++)
checiqi)ll] = hoid(jJ;

for(int =0;j<=level;j++)

// check to see if path of current item includes the to-be-swapped paths
if(check{i]li] 1= tempfi])

changei=faise;
if(check{i]i] 1= new_temp{j])

change2=false;

}
// making changes in path of current item (if necessary)
if(change1)
checki][level] = new_temp{level];
if(change?2)
checki][level] = templievel};

1/ now copy everything back with changes included
for(int i=0;i<num_labels;i++)
pageli].setPath(check{i]);

// end of Setup class
}

51

import java.util. Random;
import java.util.Date;

import java.io.*;
import Setup;

I class Optimze

This ciass reads in data from "data/motor.bd”™ and "data/ssarch_time. td” and
eonveththddahlﬂoapammlndmbonﬁms It then modifies
the hierarchy from “data/search_time.td" into one that minimzes predicted search
time. The final hierarchy is stored in the file "data/optimal.bd”.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
uniess so designated by other documentation.

*
public class Optimize extends Setup
{

int motor_time{)];
int ast=0, original_est, current_est, local_minima;

public Optimize()

(super(),

}

?ublic static void main(String args{])

Optimize f = new Optimize();
}

I* This method reads in data from files. it reads in between-Rtem search times and
hierarchical layout from the file "data/search_time.bd™ and it reads motor times
from the file "data/motor.txt”.

overnides method in super */

public void get_data_from_file()

/| Get info from category data files

try
{
String fiename = “data/search_time.bd",
File f = new File(filename);
FileinputStream labeis = new FilelnputStream(f);
DatainputStream label_fiie = new DatainputStream(labels);

// Get num_leveis and num_buttons
Slrings-bbel ﬂerudUnoo

//parse out info

1/ gt num_leveis

intend =s. lndexOf(" ")

String temp = s.substring(0,end);

num_| levels = (int) Float.valueOf(temp).floatValue();

/l get num_buttons

temp = s.substring(end+1);
num_buttons = (int) Float.valueOf(temp).fioatValue();

52

/I Compute number of labels in Hierarchy for later use
for(int i=0;i<num_levels;i++)
num_labels += (int)Math.pow((double)num_buttons,(double)i);
I/l Create pages
page = new HierarchyPage[num_labeis];
1/ Create array for motor_time
motor_time = new int{num_buttons+1][num_buttons+1];
11 get page info from data file
for(int i=0;i<num_labels;i++)

s = label_file.readLine();

liparse needed information

// get name

int name_end = s.indexOf(",");

String name = s.substring(0,name_end);

1/ get position

int position_end = s.indexOf(",",name_end+1),
String s2 = s.substring(name_end+1 position_end);
int position = (int) Float.valueOf(s2).floatValue();
// get between-item time

int time_end = s.indexOf("," position_end+2);
String $3 = s.substring(position_end+2 time_end);
int time = (int) Float.valueOf(s3).floatValue(),

/Iget replications

int reps_end = s.lastindexOf(",");

$2 = s.substring(reps_end+1); :

int reps = (int) Float.valueOf(s2).floatValue();

1/ set up page info

page]i] = new HierarchyPage(num_levels, num_buttons, name, time,
0, reps);

pagei].setPathfromPosition(position);

}
System.out.printin("Loaded page information.”);

1/ Get actual search time from file

s = label_file.readLine();

end = s.lastindexOf(" 7);

temp = s.substring(end+1);

ast = (int) Float.valueOf(temp).floatValue();

Zztch(Exception e)

System.out.printin("Error: "+e.toString());
}System.out.pﬁntln('Loaded betwen-item times..");
System.out.printin("Estimated st = "+ compute_expected_search_time());
System.out.printin("Loading motor data.”);

1/l Get motor parameters from data file
motor_time = new int {num_buttons+1][num_buttons+1];
;ry
String filename = "data/motor.bd”;
File f = new File(filename);
FilelnputStream motor_pf = new FilelnputStream(f);
DatainputStream motor_pd = new DatalnputStream(motor_pf);

for(int i=0;i<num_buttons+1;i++)
for(int j=0;j<num_buttons+1;j++)
float time;
double stdev;
Strings = motor_pd.readLine();

I/l Parse information out of string
/I First 5 spaces are button codes and white space

53

// need to find next white space to identify end of time integer
int end = s.indexOf(" *.5);

String 82 = s substring(4,end);

time = Float.valueOf(s2).floatValue();

motor_time[T)]] = (int) time;

)Sydom.un.pdmn(‘Lo.dod motor information.”);
}
catch(Exception e)

System.out.printin("Error: "+e.toString());

}

I* This method writes a hierarchy to the file “data/optimal.bd".
oveirides method in super */
public void write_to_flle()

1/ Open output file
try

{
PrintStream out2;

FileOutputStream out_file;
out_file = new FileOutputStream("data/optimal.bd™);
out2 = new PrintStream{out_file);

StringBuffer sb1 = new StringBuffer(num_leveis+", "+num_buttons);
out2.printin{sb1 .toString();
for(int i=0;i<num_labels;i++)

¢ Sﬁingsuﬂ.r sb = new StringBuffer(page{i]. name+*, "+page{i].getPosition()+
, "+pagefi].categorize_time+", "+page{i].num_repliics);
mmnun(w toString());

}

StringBuffer sb3 = new StringBuffer("Original search time = “+original_est+™\n"+
“Estimated new search time = "+current_est);

out2. printin(sb3.toString());

}
:dch(Excepﬁon e)

System.out.printin("Error: “+e.toString();
}
}

/* This method creates a new hierarchy that minimizes predicted search time.
overrides method in super */
public void create_new_hierarchy()
{
Random randGen = new Random();
Il Convert search_time data into categorization_time data by compensating for
// motor times

System.out. printin("Converting between-item time data into categorization_time data.”),

for(int i=1;i<num_labels;i++)
{
int [} path = new intinum_leveis];

path = page(i]. path;

int level = page(i].getLevel();
int ctime=0;

if(level>0)

ctime = pagefi].categorize_time - motor_time{path{level-1]}{pathlevel]];
eise //movement from "Next item" button
ctime = pagefi].categorize_time - motor_time{8)path{level]];
pageli].categorize_time= ctime;
}

original_est = compute_expected_search_time();
current_est = original_est;
local_minima = original_est;

System.out.printin("Actual search time = "+ast+"\nEstimated search time= "+original_est);

1/ actual search time (ast) and estimated search time (original_est) may differ
/I due to rounding errors

/l initialize simulated annealing parameters
int temp_count=0,

double temperature_init = (double)ast;
double temperature;

boolean found_local_minima = false;
I/ randomize Hierarchy
System.out.printin("Looking for a new local minima.\nRandomizing hierarchy...”);
for(int tem=1;tem<num_|labels;item++)
{ /for each item, swap its position with another from the same branch
int level = pagefitem].getLevel();

Inow pick a new button from the same branch in the hierarchy
int new_bin = pagefitem].pathflevel];
while(new_btn == page[item).path[level])

new_btn = (int)(Math.abs(randGen.nextint()) %num_buttons);

1/ identify path for new item

int new_temp{] = new int [num_levels};

for(int i=0;i<num_levels;i++)
new_templfi] = page[item].path(i];

new_tempflevel] = new_btn;

1/ now find the item with this path
int new_item = findPagewithPath(new_temp);
swap(level,item,new_item);

}
1/ paths scrambled, compute expected search time for scrambled hierarch
current_est = compute_expected_search_time();

// now keep going through search process until it finds a local minimum
while(lfound_local_minima)
{
System.out.printin("Looking for local minima...");
// Now make changes to the Hierarchy
int count =0;
while(count <num_labels)
{
// update simulated annealing parameters
temp_count++;
temperature = temperature_init/(2+0.0005*((double)temp_count));

1/ pick an item at random, but not item zero (it has no label)
int item = (int)(Math.abs(randGen.nextint())%(num_labeis-1))+1;

/1 get button-presses for selected page
int level = page]item].getLevel();

/Inow pick a new button from the same tree in the hierarchy
int new_btn = pagefitem].path([level};
while(new_btn == page[item].path[level])
new_btn = (int)(Math.abs(randGen.nextint())%num_buttons);

// identify path for new item

int new_temp{] = new int [num_levels];

for(int i=0;i<num_levels;i++)
new_tempfi] = page[item].path[i};

new_templlevel] = new_btn;

{/ now find the item with this path
int new_item=findPagewithPath(new_temp);

{/ Now swap items
swap(level,item, new_item);

55

{/ i search time does not improve, swap back with probability
int swap_est = compute_expected_search_time();

// compite simuisted annealing probabiity
double sa_prob = Math.exp(-(doubie)swap_esttemperature);
sa_prob = sa_prob/(1+sa_prob);

1/ pick a random number between 0 and 1

double prob = randGen.nextDouble();

{/ keep swap if search time decreases, or random number less than sa_prob
#{ swap_est < current_est || sa_prob >= prob)

System_out. printin{current_est+" "+swap_est+" count="+count

+° temp ="+lemperature+" “+temp_count+" "+sa_prob+ " “+prob),
count=0; // reset counter of non-kepth swaps
current_est = swap_est; / update current search time

}
else // swap back
{
count++; // update counter of non-kept swaps
/lswap back if search time is worse; if the same, don't bother
if(swap_est > current_est)
swap(level tem,new_item),;
)

// write new Hierarchy to file if & is the best found so far
if(current_est < local_minima && temp_count>num_labeis)
{
local_minima = current_est;
System.out.printin{"Writing current best Hierarchy to file ‘best.tt’.\n"+
" Estimated search time = "+current_est);
write_to_file();
}

}

1/ after enough ineffective swaps (count > num_labels)

I/ verify that we have a local minima, otherwise, keep making swaps
found_local_minima = local_minima_check(current_est);

P This method verifies that the current hierarchical layout is a local minima,
meaning that swapping a single tem to any other possible position in its branch
would not decrease the predicted search time. */

public boolean local_minima_check(int current_est)

{

System.out.printin{"Verifying that we have a local minimum...”);
{/ go through all kems
for(int kem=0;kem<num_iabeis;tem++)
if(page[item].num_replics >0) // make certain the kem is looked at
{

1/ get button-presses and level for selected page
int temp{] = new int [num_leveis);

temp = page{item].path;

int level = pagejitem].getLevel();

/inow go through all buttons from the same branch in the hierarchy
for(int new_bin = O;new_bin<num_buttons;new_btn++)
{

// build path for swap-to button

int new_temp{] = new int [num_ieveis);

for(int i=0;icnum_levels;i++

new_temp(i] = tempfi];
new_tempflevel] = new_btn;

/] now find the Rem with this path
int new_Rtem=findPagewithPath{new_temp);

swap(level tem,new_iem);

1/ if search time does not improve, swap back

int swap_est = compute_expected_search_time();
if{ swap_est < current_est) 1/ keep swap

{

curent_est = swap_est,
. System.out.printin("This was not a local minimum.”);
retumn false; // exit and tell the optimization procedure to keep looking

}
eise // swap back
{

swapf(level,item,new_item);
}
}

}
1 if no swap improved predicted search time, the current layout must be a
// local minimum
System.out.printin("This was a local minimum.”);
return true;
}

I* This method takes the current hierarchical layout, runs through all the
items in the mission scenario, and computes the predicted search time

for finding all the items.

It does this by noting the path and items the user must follow and categorize
to find the target items. It then adds up motor and categorization times

as appropriate. */
public int compute_expected_search_time()
{

int est=0;

1/ cycle through all items in mission scenario
for(int i=0;i<num_labels;i++)

if(pageli].num_replics >0)
{

int search_time = 0;
int temp(] = new int{num_ievels};
temp = pagei]. path;

1/ go through path of button presses
1/ always starts with "Next Target” (button 8)
search_time += motor_time[8][temp{O]];
for(int k=0;k<num_levels-1;k++)
ifttempfk]!=-1)
{

if(templk+1]i=-1)
search_time += motor_time[temp{k]]temp[k+1]};
{/ build vector for current movement through path
int new_tempf] = new int [num_levels],
for(int k2 =0;k2<num_levels;k2++)

if(k2<=k)

new_temp{k2] = temp[k2];
else

new_temp{k2] = -1;

}

// now find the item with this current path and add its categorization
1/ time to search time for target item

int new_item=findPagewithPath(new_temp);

search_time += page[new_item}.categorize_time;

}
s {/ multiply search time for item by number of times it is searched for
est += search_time*page[i].num_replics;
}
}
. retum est;

57

import java.awt.*;
import java.io.*;

I ciass BulldOptimalHierarchy

This class provides an interface to go through the steps needed to build an
optimal hierarchy. It calis, in correct sequence other programs that gather needed
data and compute the optimization algorithm.

Wiritten by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
uniess so designated by other documentation.

*/
public class BuildOptimalHierarchy extends Frame
Button bf];
public BuldOptimalHierarchy(String titie)
t // set up frame with option buttons
super(titie);

[/set size of display
this.resize(600,400);

1/ Set font
Font font = new Font("Helvetica” Fort.PLAIN,24);
setFont(font);

//ICreate menubar
MenuBar menubar = new MenuBar();
Menu file;

this.setMenuBar(menubar);
/iCreate file menu. Add Quit.
filexnew Menu("File");
file.add(new Menuitem("Quit"));
menubar.add(fie);

1l create buttons

b = new Button [5];

b{0] = new Button("Practice");

b{1] = new Button("Motor data”);

b{2] = new Button("Hierarchy ssarch™);
b{3] = new Button("Optimization”);
b{4] = new Button("Testing");

setLayout(new GridLayout(5,1,10,20));
for(int [=0;i<5;i++)
{

add(b{i);
b{i].disable();

}
bj0].enabie();

this.pack();
this.show();

58

}

public static void main{String args{])
{

BuildOptimalHierarchy cmb = new BuildOptimalHierarchy("Build Optimal Hierarchy™);

}
public boolean action (Event e, Object arg)
{

if(e target instanceof Menultem)

{ /Watch for quit command
String label = (String) arg;
if(label.equals("Quit"))System.exit(0);

if(e target instanceof Button)
if (e.target == b[Q]) // User goes through practice trials
{

b{0).setLabel("Just a second...”);
for(int i=0;i<5;i++)
bfi].disable();

Setup stp = new Setup();
b{0].setLabel("Practice”);
Practice st = new Practice(" Practice™);

I/l enabie button for next step
b{1}.enable();
retumn true;

}
else if (e.target == b[1]) // User gathers motor time data
{

/] check to see if motor time data is already gathered
I'if not, gather it

File f = new File ("data","motor.txt”);

if(f.exists())

MotorTime motor = new MotorTime("Motor data”);

for(int i=0;i<5;i++)
bii].disable();

bf2].enable();
retum true;

}
else if (etarget == b[2]) // User gathers between-item time data
bf2).setLabel("Just a second...”);
for(int i=0;i<5;i++)
bfi].disable();
Setup stp = new Setup();

b{2].setLabel("Hierarchy search™);
SearchTime st = new SearchTime("Hierarchy search”);

bf3].enable();
retum true;

}
else if (e.target == b[3]) // Computer builds model and creates optimal hierarchy
{

for(int i=0;i<5;i++)
bfi].disable();
b{3).setLabel("Come back in 1/2 hour”);

Optimize opt = new Optimize();
b{3].setLabel("Optimize");
b{4}.enable();

retum true;

59

eise If (a.target == b{4]) // User gathers data with optimal hierarchy
(TestHierarchy th = new TestHierarchy("Testing”);
for(int i=0;i<5;i++)
bfi].disable();
retum true,;

